# **The Extruder** A look inside the "Black Box"



#### By Hans-Joachim Graf, John Seward, Scott D. Baird



- Introduction
- Rheology
- Visualization with Color Rubber
- Empirical Assessment
- Conclusion





## **Introduction** Model Theory

- Empirical Models predict each of the energy balance parameters with respect to independent extruder settings.
  - The models are only valid if confined to the experimental boundary





| Value       | n | Value        | <u> </u> |
|-------------|---|--------------|----------|
| Flow        | 2 | Speed        | -0.5     |
| Temperature | 0 | Flight Depth | 0.5      |
| Pressure    | 0 | Pitch        | 0        |
| Power       | 2 |              | <u>8</u> |





# **Introduction** Purpose of FEM-Simulations

- The reason for simulation and prediction of extruder processes
  - Establish Process window
  - State of Material at Die
- Expand Experimental boundary beyond Model Theory.
- "Single Hit" manufacture of a Die using predictive Equations.
- This requires a intimate understanding of the Extruder: we would say a look into the "black box"



Glass Window Extruder: [Source: Compuplast]



# **Rheology** Description of Flow

- The Power Equation [often referred as "Power Law"] does not fully describe, what is observed in experiments
  - Slip flow for example
- The Equation does not describe the velocity distribution in a flow channel for a non-newtonian fluid accurately.



## **Rheology** Measurement Devices for Viscosity

- The mathematical description of data using the power equation, and
- the usage of equipment for measurement, which has other constraints, does not result in an understanding of the physical processes.







Shear rate [s<sup>-1</sup>]



# Rheology

**EPDM Compound /Temperature Effects** 

- Depends on the test method used.
- Capillary rheometry [CR] does not always show an effect, where extrusion rheometry [ER] does.





Source: C. Barres & J.L. Leblanc, University of Paris, Polymer Processing and Rheology

Material - Shear Viscosity



#### **Rheology** Pressure-dependent Navier slip law

$$\boldsymbol{\tau} = -\left( \begin{array}{c} k_{\mathrm{NL}} + \frac{k_{\mathrm{NH}}}{1 + \frac{\|\boldsymbol{\tau}\|}{k_{\mathrm{c}}.p}} \end{array} \right) \mathbf{v}$$

For high values of p, tends to

$$\boldsymbol{\tau}$$
 = - (  $k_{_{NL}} + k_{_{NH}}$ ) v

For low vales of p, tends to

$$\boldsymbol{\tau}$$
 = - (  $k_{_{NL}}$  )  $\mathbf{v}$ 

In between, manages transition. Typically,  $k_{NL}$  is a low Navier-slip factor and  $k_{NH}$  is high.

If  $k_{NH} = \infty$  and  $k_{NL} = 0$ , then no slip at high pressure and perfect slip applies at low pressure.

Source: Jean-Marie Mareshal, Fluent



#### **Rheology** Pressure Effects

#### • Pressure effect on slip





Source: Thomas Wilhelmsmeyer: Thesis



# Visualization

#### Swirl diameter versus screw length and Flight Depth

Source: Cooperation with Cooper-Standard Automotive

**Experimental Observed Mixing Effects** 



# Visualization Flow in the Extruder



#### One Slice represents 1 D



# Visualization Eddy Analysis

- Cold core consumption has a pattern consisting of two swirl currents, which is not predicted.
- The Layer on the bottom of the screw is also not predicted.

# **Empirical Assessment**



**Operating Characteristics** 



# **Empirical Assessment** Adiabatic Nature of System

Pressure
stability over
range of shear
rates





screw speed[rpm]



#### **Empirical Assessment** Pressure Flow Calculation

• Flow balance neglecting leakage flow

$$\dot{\mathbf{V}} = \dot{\mathbf{V}}_{drag} - \dot{\mathbf{V}}_{pressure}$$

• Normalizing with respect to drag flow

$$\pi_{\text{pressure}} = 1 - \pi_{\dot{v}}$$





#### **Empirical Assessment** Pressure Flow



# Conclusion

- The fundamental modeling of fluid behavior needs to be revisited
  - "Power law" vs. Newtonian Fluid
  - Slip versus Non-Slip Flow
- Information gained from Visualization techniques will improve the accuracy of Models [FEA]
- Empirical modeling allows the extraction of more information with the same amount of experimental data.